The Passionate Series

By Charles Fourier

Entry 8246

Public

From: holdoffhunger [id: 1]
(holdoffhunger@gmail.com)

../ggcms/src/templates/revoltlib/view/display_childof_anarchism.php

Untitled Anarchism The Passionate Series

Not Logged In: Login?

0
0
Comments (0)
Permalink
(1772 - 1837)

François Marie Charles Fourier (/ˈfʊrieɪ, -iər/;French: [ʃaʁl fuʁje]; 7 April 1772 – 10 October 1837) was a French philosopher, an influential early socialist thinker and one of the founders of utopian socialism. Some of Fourier's social and moral views, held to be radical in his lifetime, have become mainstream thinking in modern society. For instance, Fourier is credited with having originated the word feminism in 1837. Fourier's social views and proposals inspired a whole movement of intentional communities. Among them in the United States were the community of Utopia, Ohio; La Reunion near present-day Dallas, Texas; Lake Zurich, Illinois; the North American Phalanx in Red Bank, New Jersey; Brook Farm in West Roxbury, Massachusetts; the Community Place and Sodus Bay Phalanx in New York State; Silkville, Kansas, and several others. In Guise, France, he influenced the Familistery of Guise [fr; de; pt]. Fourier later in... (From: Wikipedia.org.)


On : of 0 Words

The Passionate Series


Source: The Utopian Vision of Charles Fourier. Selected Texts on Work, Love, and Passionate Attraction. Translated, Edited and with an Introduction by Jonathan Beecher and Richard Bienvenu. Published by Jonathan Cape, 1972;
First Published: in 1822, Théorie de l'unité universelle.
Transcribed: by Andy Blunden.


The series of groups is the method adopted by God in the organization of the kingdoms of nature and of all created things. The naturalists, in their theories and classifications, have unanimously accepted this system of organization; they could not have departed from it without coming into conflict with nature and falling into confusion.[28]

If human passions and personalities were not subject, like the material realms, to organization by series of groups, man would be out of unity with the universe; there would be duplicity of system and incoherence between the material and passional worlds. If man aspires to social unity, he should seek it by adhering to the serial order to which God has subjected all of nature.

A passionate series is a league or affiliation of several small groups, each animated by some nuance or variety of a passion. The passion in question is the generic passion for the whole series. Thus if twenty groups cultivate twenty different types of roses, the generic passion of their series is rose-growing; the groups cultivating the white rose, the yellow rose, the moss-rose, etc., represent its varieties.

To take another example: twelve groups are engaged in the cultivation of twelve different flowers. The tulip is cultivated by one group, the jonquil by another, etc. These twelve groups together constitute a series of flower-growers whose generic function is the cultivation of flowers. The flowers are distributed according to a scale of tastes, each group cultivating the variety of flower for which it has a special fondness.

Passions limited to a single individual are not admissible in the serial mechanism. Three individuals — A, B, C — like their bread salted in different ways: A likes his almost unsalted; B likes his moderately salted; C prefers heavily salted bread. These three people are in a state of graduated dissonance which does not lend itself to the creation of serial accords. For such accords to take place there must be a number of groups linked in ascending and descending order.

A proper group should have from seven to nine members at the minimum in order to permit the development of balanced or equilibrated rivalries among its members. In the passionate series, then, we cannot base our calculations upon isolated individuals. The intrigues of a series could not be maintained by twelve individuals with a passion for the cultivation of twelve different flowers. This will be proved in the body of the treatise. For the time being it should be kept in mind that the term passionate series always refers to an affiliation of groups and never of individuals.

Thus the three individuals. mentioned above — A, B, C — could not form a series of breadists or bread-lovers. But if instead of three people we suppose thirty — namely, eight of taste A, ten of taste B, twelve of taste C — they would form a passionate series, that is, an affiliation of groups with graduated and contrasted tastes. Their joint activity and their cabalistic discords would create the intrigues necessary to bake excellent bread and grow fine wheat.[29]

The passionate series always strive toward some useful end such as the increase of wealth or the perfection of work even when they are engaged in leisure activities like music.

A series cannot be organized with less than three groups, for it needs a middle element to keep the two contrasting extremes in balance. A balance may also be established among four groups, provided their properties and relations correspond to those of a geometrical proportion.

When there are more than four groups in a series, they should be divided into three bodies, forming a center and two wings, or into four bodies, forming a quadrille. In each body of groups the varieties which are closely allied and homogeneous are united.

The societary order must thus employ and develop all varieties of taste and character in a scale of nuanced gradations. It forms a group to represent each variety without making any judgment concerning the merit of a particular taste. All tastes and penchants are good and they all have their uses, provided they can be made to form a series with ascending and descending wings and transitional groups at either extreme to represent uncommon and peculiar tastes. When a series is arranged in this manner, according to the methods which will be explained in the body of the treatise, each of its groups will cooperate harmonically with all the others, be they a hundred in number. The groups will resemble the cogs in a wheel which are all useful provided they mesh properly.

The calculus of the passionate series is going to establish a principle flattering to the whole human race: it will demonstrate that all tastes which are not harmful or annoying to others have a valuable function in the societary state. They will become useful as soon as they are developed in series — that is, according to a graduated scale in which each nuance of taste is represented by a group.

Thus the theory of association is nothing more than the art of forming and activating passionate series. As soon as this science has been discovered on a globe, it can at once establish social unity and attain individual and collective happiness. Thus it is a matter of urgent necessity for the human race to acquire a knowledge of this theory.

The passionate series must be contrasted, interlocked, and kept in a state of rivalry and exaltation. A series failing to fulfill these conditions could not perform its functions in the mechanism of Harmony.

A series must be contrasted — that is, its groups must be arranged in ascending and descending order. Thus to form a series of a hundred individuals classed according to age the following division should be adopted:

Ascending Wing: Groups of infants and children.

Center of the Series: Groups of adolescents and adults.

Descending Wing: Groups of aged persons.

The same method should be followed in classifying series of passions and character traits.

This method serves to bring out contrasts and hence to produce enthusiasm in the various groups. Each group becomes passionately addicted to its own dominant penchant or special taste. At the same time it develops contrasting tastes and penchants, and it becomes critical of the penchants and occupations of the contiguous groups in the series, with which it is in rivalry.

This system of progressive or graduated classification creates sympathies and alliances between the contrasted groups, and a antipathies or dissidences between contiguous groups with similar tastes.

The series needs discords as much as it needs harmonies. It must be stimulated by a host of rival pretensions which will give rise to cabalistic alliances and become a spur to emulation. Without contrasts it would be impossible to form leagues between the groups and create enthusiasm; the series would lack ardor for its labors, and its work would be inferior in quality and quantity.

The second necessary condition is to establish intrigues and active rivalries within a series. Since this should result from the regularity of contrasts and the graduated distribution of nuances or varieties, it may be said that this second condition is fulfilled once the first is satisfied. Of course there is more to say about the means by which intrigues are created, but that will come later.

The third condition to be fulfilled is that of the meshing or linkage of the different series. This can take place only if the groups change their work at frequent intervals, say every hour or at most every two hours. For example, a man may be employed:

At 5: 00 A.M. in a group of shepherds.

At 7: 00 A. M. in a group of field-workers.

At 9: 00 A. M. in a group of gardeners.

A session of two hours’ duration is the longest admissible in Harmony; enthusiasm cannot last any longer than that. If the work is unattractive in itself, the session should be reduced to one hour.

In the example just given the three series of shepherds, fieldworkers and gardeners will become meshed by the process of reciprocal interchange of members. It is not necessary for this interchange to be complete — for each of the twenty men engaged in tending flocks to go off and work in the fields at 7:00. All that is necessary is for each series to provide the others with several members taken from its different groups. The exchange of a few members will suffice to establish a linkage or meshing between the different series.

A passionate series acting in isolation would be useless and could perform no functions of a harmonic character. Nothing would be easier than to organize one or more industrial series in a large city like Paris. They might be engaged in the growing of flowers or fruit or anything else, but they would be completely useless. At least fifty series are necessary to fulfill the third condition, that of meshing. It is for this reason that the theory of association cannot be tried out on a small number of people, say twenty families or one hundred individuals. At least four hundred people — men, women and children — would be necessary to form and mesh the fifty series required to activate the mechanism of simple association. To organize a compound association at least four hundred series, requiring fifteen or sixteen hundred people, would be needed.

From : Marxists.org

Chronology

Back to Top
An icon of a news paper.
February 19, 2021; 5:27:32 PM (UTC)
Added to http://revoltlib.com.

An icon of a red pin for a bulletin board.
January 7, 2022; 4:43:03 PM (UTC)
Updated on http://revoltlib.com.

Comments

Back to Top

Login to Comment

0 Likes
0 Dislikes

No comments so far. You can be the first!

Navigation

Back to Top
<< Last Entry in Anarchism
Current Entry in Anarchism
The Passionate Series
Next Entry in Anarchism >>
All Nearby Items in Anarchism
Home|About|Contact|Privacy Policy